Вот пример того, как кишечные бактерии могут использовать чувство кворума для блокировки патогена. В ходе любопытного исследования, проведенного международной группой ученых, было обнаружено, что особый вид комменсальных бактерий (Ruminococcus obeum), присутствующий в кишечнике здоровых бангладешских детей, может использовать межмикробную коммуникацию для ухудшения способности холерных вибрионов (Vibrio cholerae) колонизировать человеческий кишечник и вызывать холеру. Благодаря эффектам чувства кворума комменсальные руминококки изменяли экспрессию генов холерных вибрионов и ограничивали их способность надолго задерживаться в кишечнике и вызывать болезнь.
Не исключено, что все описанные ваше стратегии манипуляции с микробиомом — как естественные, так и целенаправленно разработанные учеными — в недалеком будущем начнут использоваться для снижения риска некоторых инфекционных заболеваний.
Отражать атаки вирусов приходится не только людям, животным и растениям: вторжению вирусов подвергаются и живущие в нашем теле бактерии и археи. Наше тело защищает от вирусных и бактериальных инфекций многокомпонентная иммунная система, но микробы, населяющие наше тело, не имеют ни лимфоцитов, ни макрофагов, ни каких-либо иных иммунных клеток. Значит ли это, что они совершенно беззащитны? Нет, эти микроорганизмы располагают собственной системой противовирусной обороны.
Бактерии и вирусы обладают своего рода аналогом иммунной системы, только состоит она не из полчищ специализированных клеток, в любой момент готовых мобилизоваться и ринутся в бой с противником. Вместо этого наши микроорганизмы мобилизуют различные типы ферментов, раздирающие вирусы буквально в клочья. Мы атакуем врагов особыми клетками, а наши микробы используют для этого ферменты. Их система самозащиты называется CRISPR.
Грубо говоря, CRISPR (от англ. Clustered Regularly Interspaced Short Palindromic Repeats — короткие палиндромные повторы, регулярно расположенные группами) — это «иммунная система» прокариотических организмов (то есть безъядерных одноклеточных микроорганизмов — бактерий и архей). Как и человеческая иммунная система, CRISPR обладает иммунологической памятью: она может вспомнить, что уже сталкивалась прежде с той или иной внешней угрозой. Иммунологическая память позволяет организму распознавать патоген (например, вирус) и при повторном столкновении с ним формировать более быструю, более специфическую и более эффективную иммунную реакцию. Бактериям она помогает защищаться от вирусов (бактериофагов) и других мобильных фрагментов ДНК, которые способны нарушать целостность бактерий и подавлять их функции.
В некоторых отношениях бактериальная CRISPR-атака вирусов напоминает нападение осьминогоподобных, вооруженных лазерами Стражей на город Сион в кинотрилогии «Матрица». Ферменты рвут на части ДНК вирусов и разрушают их, что помогает бактериям и археям сохранять свою целостность. Но механизмы работы этих бактериальных ферментов гораздо сложнее, чем представлялось вначале.
Недавно разгаданные тайны микробиома породили настоящую революцию в системах оценки безопасности в здравоохранении, но еще больше сюрпризов можно ожидать от самих наших микробных партнеров. Поразительное открытие собственной «иммунной системы» у бактерий открывает совершенно новые возможности в медицине, ветеринарии и биотехнологии. Поскольку бактерии очень уязвимы к вирусным атакам, они вынуждены активно защищать свою целостность. С этой целью они выработали уникальную генетическую стратегию самообороны, открытую Дженнифер Дудна из Калифорнийского университета в Беркли и Эммануэль Шарпантье из Центра им. Гельмгольца по исследованию инфекционных заболеваний в Германии и описанную Карлом Циммером в журнале Quanta.
Эта защита включает способность бактерий захватывать фрагменты ДНК внедряющегося в них вируса, хранить их в особых местах своего собственного генома, превращать копии вирусной ДНК в копии РНК и затем использовать кусочки этой РНК вместе со специфическими ферментами, разрушающими ДНК, для атаки ДНК того же самого вируса. Поскольку последовательность нуклеотидов РНК в точности соответствует вирусной ДНК, ферменты разрушают только «нужные» сегменты ДНК. Такой уникальный способ самообороны требует от бактерий лишь незначительных расходов энергии и почти не дает неблагоприятных побочных эффектов.
Основой всего этого процесса служат две серии последовательностей генов. Первая из них — уже упоминавшиеся участки CRISPR. Рядом располагаются гены, ответственные за образование ферментов, разрезающих ДНК (Cas); эти гены называются CRISPR-ассоциированными генами. Cas-ферменты используют бактерию, несущую РНК-копию вирусной ДНК, в качестве «посадочной площадки». Как только происходит посадка, один из Cas-ферментов, Cas9, меняет свою форму и начинает, словно ножом, разрезать на части вирусную ДНК, тем самым разрушая вирусный геном.
Примечательно, что эта система бактериальной иммунной защиты специфическим образом направлена только против какой-нибудь одной вторгающейся в клетку разновидности вирусов и не разрушает другие ДНК. Благодаря такой специфичности и способности бактерии извлекать пользу из своего опыта предшествующего столкновения с вирусом, описанная система бактериальной защиты представляет собой некое подобие адаптивного иммунного ответа. По сути дела, имеет место своего рода вакцинация бактерии, в результате которой она оказывается подготовленной к реальной атаке интактного вируса.